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Abstract—The first selective reductive amination of carbonyl telechelic oligoisoprene (CTPI) using NaBH(OAc)3 as the reducing
agent is described. An access to tri- and tetrafunctionalized oligoisoprenes is realized in two or three steps from CTPI in high yield.
� 2007 Elsevier Ltd. All rights reserved.
The design and the development of new polymers are a
continuous task for polymerists to target specific appli-
cations. In this respect, our group has developed an
interesting method1 (Scheme 1) consisting of a selective
cleavage of synthetic or natural high molecular weight
polyisoprene leading to liquid carbonyl telechelic cis-
1,4 polyisoprenes (CTPI) with controlled microstruc-
ture, and with precise chain ends and functionalities
(fn = 2). These oligoisoprenes were engaged as precur-
sors in the synthesis of linear polyurethanes,2 which
have showed very interesting physico-chemical and bio-
logical3 properties as thermoplastic elastomers. To ex-
plore the scope of these oligomers, we were strongly
involved in the reactivity control of each CTPI carbonyl
chain end. Thus we particularly focused our efforts on
regioselective chemical modifications using direct reduc-
tive amination. Different chemical modifications were
tested affording polyfunctional oligomers. Beyond the
fundamental interest of such investigations, the objec-
tives behind chemical modification research are twofold:
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on one hand to prepare new materials for specific uses in
nontraditional areas, on the other hand to find alterna-
tive methodologies to conventional ones using environ-
mentally friendly sources such as natural rubber latex.

Direct reductive amination of carbonyl compounds,
which allows a one step access to amine from aldehydes
or ketones, is a well known reaction.4,5 However, to our
knowledge, very few authors described a selective direct
reductive amination towards aldehydes over ketones.

Thus, Oshawa and co-workers6 carried out inter- and
intramolecular competition reactions in order to com-
pare the reactivity of aldehyde and ketone groups
towards aniline. They determined a complete selectivity
in favour of aldehydes under Hantzsch dihydropyridines
reduction7,8 conditions, ketones remaining unchanged.
Rather than using similar reductive conditions, we opted
for the more traditional NaBH(OAc)3 reducing agent
because of its commercial availability and smooth
p m

H
O OH5IO6

30 °C, 6 h, THF, 91%

1

ion; Polyfunctionalized oligoisoprenes.
niv-lemans.fr

mailto:jean-francois.pilard@univ-lemans.fr


G. Morandi et al. / Tetrahedron Letters 48 (2007) 7726–7730 7727
reactivity demonstrated not to reduce neither isoprene
double bond nor ketone.4c The first experiments were
carried out with butylamine,1b a very reactive primary
amine. Used in excess, it has been demonstrated that
the reductive amination occurred at the two chain ends
(Table 1, entry 1), whereas used in default (entry 2), a
mixture of oligomers was obtained. On the other hand,
we have shown that the use of ammonium acetate
towards CTPI (entry 3) led to a clean and selective
reductive amination of the aldehyde function only after
activation with acetic acid (Scheme 2). If this latter
derivative showed a good stability at room temperature
Table 1. Direct reductive amination of CTPI
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Scheme 2.
a fast polycondensation occurred when heated above
40 �C.9

When less reactive amines are used, a complete selectiv-
ity was observed. Thus, when diethyl aminomalonate
was used (entry 4), the 1H NMR investigation showed
the disappearance of characteristic signals (CHO and
CH2 a to the aldehyde) indicating a total conversion
of the aldehydic group, whereas the ketone entity did
not react even when 2 equiv of amine were used.10 This
suggested that the unshared pair of electron on the
amine nitrogen was not sufficiently nucleophilic to add
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to the ketone. Moreover, no competing aldehyde5,11

and/or ketone reduction was observed. Secondary
amines were then tested (entries 5–7) and afforded amine
oligomers in high yields. We confirmed that the selectiv-
ity of the reductive amination of aldehydes over ketones
was dependent on the nature and the substitution pat-
tern of the amine.

It is worth noting that alcohol oligoisoprene 812 can be
prepared by a selective reduction of diester 5 using
NaBH4 as depicted in Scheme 3. From the same diester
5, the interesting triol 913 was synthesized switching the
reductant to LiAlH4 (Scheme 3). At last, diol 7 was pro-
duced directly from CTPI (entry 7). Thus, three comple-
mentary oligoisoprenes bearing hydroxy groups were
obtained from CTPI in one or two steps. These precur-
sors could offer various possibilities to design new poly-
mers. From dichlorooligoisoprene 6, chlorines are easily
substituted by azido group (Scheme 4). Organic azides14

are particularly useful intermediates in synthetic chemis-
try because they are readily introduced into molecules.
They can be engaged in 1,3-dipolar additions or they
can be transformed into a variety of functionalities such
as azo or amine compounds in order to obtain polyure-
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Scheme 3. Reagents and conditions: (a) reductive amination; (b) NaBH4, 60
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thane foams and coatings. Finally, reduction of 1015

using Staudinger conditions16 afforded diamino oligo-
isoprene 1117 confirmed by IR investigations showing
the disappearance of azido bands.

From a telechelic oligomer, a trifunctional oligomer was
obtained with a possible orthogonal modification of the
various functionalities. We, then, focused on tetrafunc-
tional oligoisoprenes. Indeed, tetraamine macromono-
mer 1418 could be obtained by a double reductive
amination of end chain ketone employing N,N 0-ethylene
diamine and starting from 6. In this case, ethylene dia-
mine in the presence of acetic acid is nucleophilic en-
ough to form iminium salt and dimer 12 was obtained
in good yield. Chlorines were then substituted with azi-
do groups, which were easily reduced in primary amine
in nonoptimized yield (Scheme 4).

In summary, CTPI can be modified selectively without
any protection of the ketone moiety by reductive amina-
tion using prefunctionalized amine. Chemical modifica-
tions of these functionalities lead in two or three steps
to interesting tri or tetrafunctionalized oligomers. A
wide panel of macromolecules with different degree of
O
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functionality is obtained and could lead to various
hyperbranched polymers.
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